輕量級卷積神經網絡在心電分類中的應用
首發時間:2025-12-16
王鵬盛(2004),男
劉婧 1劉婧,女,講師
摘要:(目的針對傳統心電圖分析依賴人工診斷、效率低下的問題,提出一種基于一維卷積神經網絡的心律失常自動分類方法。方法從PhysioNet的MIT-BIH心律失常數據庫獲取心電信號,經過預處理、去噪和心拍分割后,構建包含正常心拍(N)和室性早搏(V)兩類的心拍數據集。設計一種輕量級一維卷積神經網絡模型,通過多層卷積和池化操作提取心電信號的深層特征,并采用Dropout正則化防止過擬合。結果在包含100個心拍樣本的數據集上,模型在測試集上達到100%的分類準確率,精確率、召回率和F1分數均為1.00。模型僅需6個訓練周期即可收斂,表現出優異的分類性能和訓練效率。結論該方法能夠有效實現心電信號的自動分類,為心律失常的快速診斷提供了一種可靠的輔助工具。
關鍵詞: 心電信號 心律失常 深度學習 卷積神經網絡 自動診斷。
For information in English, please click here
Application of Lightweight Convolutional Neural Network in ECG Classification
王鵬盛(2004),男
LiuJing 1劉婧,女,講師
Abstract:Objective To address the inefficiency of traditional ECG analysis relying on manual diagnosis, this paper proposes an automatic arrhythmia classification method based on one-dimensional convolutional neural network. Methods ECG signals were obtained from the MIT-BIH arrhythmia database of PhysioNet. After preprocessing, denoising and heartbeat segmentation, a heartbeat dataset containing normal beats (N) and premature ventricular contractions (V) was constructed. A lightweight one-dimensional convolutional neural network model was designed to extract deep features of ECG signals through multi-layer convolution and pooling operations, and Dropout regularization was adopted to prevent overfitting. Results On the dataset containing 100 heartbeat samples, the model achieved 100% classification accuracy on the test set, with precision, recall and F1 score all reaching 1.00. The model converged after only 6 training epochs, demonstrating excellent classification performance and training efficiency. Conclusion This method can effectively realize automatic classification of ECG signals and provides a reliable auxiliary tool for rapid diagnosis of arrhythmia.
Keywords: ECG signal arrhythmia deep learning convolutional neural network automatic diagnosis
基金:
引用

No.****
動態公開評議
共計0人參與
勘誤表
輕量級卷積神經網絡在心電分類中的應用
評論
全部評論