一種面向鐵路道口嵌入式設備的輕量級目標檢測算法
首發時間:2025-11-28
趙陽(1975—),男,工程師,主要研究方向為鐵路車輛檢測
王彬 1 樓向東 1 趙士豪 2 宋保業 2宋保業,副教授,主要研究方向為目標檢測技術,songbaoye@sdust.edu.cn
摘要:為解決鐵路道口嵌入式設備上目標檢測算法部署困難的問題,提出一種輕量級算法--YOLO-ED。該算法通過引入新穎的C3-Faster模塊、坐標注意力機制及Focal-EIoU損失函數對YOLOV5進行優化,旨在實現檢測精度與計算效率的平衡。實驗結果表明,與基線模型相比,YOLO-ED在保持檢測精度基本不變的前提下,推理速度提升26.9%,模型參數量和計算量分別顯著降低27.3%和33.3%。最終在Jetson Nano B01平臺上成功部署,進一步驗證了該算法在資源受限場景下的高效性與工程應用價值。
關鍵詞: 鐵路道口 嵌入式系統 輕量化目標檢測算法 YOLO
For information in English, please click here
A lightweight object detection algorithm for railway crossing embedded devices
趙陽(1975—),男,工程師,主要研究方向為鐵路車輛檢測
WANG Bin 1 LOU Xiangdong 1 ZHAO Shihao 2 SONG Baoye 2宋保業,副教授,主要研究方向為目標檢測技術,songbaoye@sdust.edu.cn
Abstract:To address the difficulty in deploying object detection algorithms on embedded devices at railway crossings, a lightweight algorithm, namely YOLO-ED, was proposed.The YOLOV5 model was optimized through the introduction of a novel C3-Faster module, a coordinate attention mechanism, and Focal-EIoU loss function, aiming at achieving a balance between detection accuracy and computational efficiency. The experimental results demonstrate that, in comparison with the baseline model, the inference speed of YOLO-ED is increased by 26.9% while maintaining a comparable level of detection accuracy, with the parameter count and computational load significantly reduced by 27.3% and 33.3%, respectively. The successful deployment of the algorithm on the Jetson Nano B01 platform further validates its high efficiency and practical engineering value in resource-constrained scenarios.
Keywords: railway level crossing; embedded systems; lightweight object detection algorithm; YOLO
引用

No.****
同行評議
勘誤表
一種面向鐵路道口嵌入式設備的輕量級目標檢測算法
評論
全部評論