ROI引導(dǎo)的Daugman瞳孔定位算法
首發(fā)時間:2025-10-31
武麗(1983—),性別女,副教授,主要研究方向?yàn)槿斯ぶ悄堋⒛J阶R別, 79901056@qq.com
丁琴 1 2摘要:為解決瞳孔中心定位算法在光照變化、遮擋及個體差異下魯棒性不足、耗時較長的問題,提出聯(lián)合ROI(Region of Interest)檢測與Daugman算法優(yōu)化的輕量化瞳孔定位算法。構(gòu)建以GE_ShV2為骨干網(wǎng)絡(luò)的YOLOv8n模型,通過結(jié)構(gòu)優(yōu)化降低46.91%計(jì)算量,模型體積和參數(shù)分別減少43.55%與46.18%,同時保持99%的檢測精度;在頸部網(wǎng)絡(luò)引入C2f_ESCA模塊實(shí)現(xiàn)通道稀疏注意力加權(quán),在DySample基礎(chǔ)上新增候選點(diǎn)重要性加權(quán)抽樣,根據(jù)噪聲可靠度與邊緣梯度動態(tài)分配采樣概率,有效增強(qiáng)邊緣感知,減少漏采。對Daugman算法引入灰度差平方和與積分圖加速算法,將復(fù)雜度從O(N)降至O(1),有效提升定位效率與抗干擾性,縮短定位時間。實(shí)驗(yàn)結(jié)果表明,改進(jìn)后的算法在處理邊緣細(xì)節(jié)和光照變化時表現(xiàn)更加穩(wěn)健。
關(guān)鍵詞: 瞳孔檢測 YOLOv8 輕量化 Daugman 瞳孔定位
For information in English, please click here
ROI-guided Daugman pupil localisation method
武麗(1983—),性別女,副教授,主要研究方向?yàn)槿斯ぶ悄堋⒛J阶R別, 79901056@qq.com
DING Qin 2Abstract:n order to solve the defects of the pupil centre localisation algorithm, which is susceptible to poor robustness and long time-consumption under light, occlusion and individual differences, a lightweight pupil localisation algorithm combining ROI detection and Daugman optimisation is proposed. The YOLOv8n model with GE_ShV2 as the backbone network is constructed to reduce 46.91% of the computation volume by structural optimization, and the model volume and parameters are reduced by 43.55% and 46.18% respectively, while maintaining 99% of the detection accuracy; the C2f_ESCA module is introduced into the neck network to achieve the sparse attention weighting of the channels, and the new candidate points are added on the basis of DySample. Importance-weighted sampling is added on the basis of DySample, and the sampling probability is dynamically allocated according to the noise reliability and edge gradient, which effectively enhances edge perception and reduces leakage. The Daugman algorithm introduces the grey level difference sum of squares calculation method and integral graph acceleration algorithm, which reduces the complexity from O(N) to O(1), effectively improves the positioning efficiency and anti-interference, and shortens the positioning time. The experimental results show that the improved algorithm performs more robustly when dealing with edge details and light changes.
Keywords: pupil detection YOLOv8 lightweighting daugman pupil localisation
引用

No.****
同行評議
勘誤表
ROI引導(dǎo)的Daugman瞳孔定位算法
評論
全部評論