0
0
一種快速的商品關(guān)聯(lián)規(guī)則挖掘算法研究
首發(fā)時間:2025-08-21
趙鵬(2000-),男,碩士研究生,主要研究方向:優(yōu)化理論與方法
汪勇 1汪勇(1967-),男,教授,主要研究方向:機器學(xué)習(xí),系統(tǒng)優(yōu)化與決策
張洪 1張洪(1981-),女,教授,研究方向:價值共創(chuàng)
摘要:傳統(tǒng)關(guān)聯(lián)規(guī)則數(shù)據(jù)挖掘算法多用Apriori算法,對最小支持度和最小置信度參數(shù)敏感,且不能產(chǎn)生結(jié)構(gòu)化的關(guān)聯(lián)規(guī)則,效率較低。在Apriori算法的基礎(chǔ)上,提出一種快速的關(guān)聯(lián)規(guī)則挖掘(Fast Association Rule Mining, FARM)算法,該算法采用提出的引導(dǎo)函數(shù)支配和動態(tài)組合數(shù)生成技術(shù)實現(xiàn)頻繁項集的選擇、連接和分解,解決關(guān)聯(lián)規(guī)則挖掘的可行性和效率問題。通過對UCI真實數(shù)據(jù)集實驗分析發(fā)現(xiàn),F(xiàn)ARM算法挖掘關(guān)聯(lián)規(guī)則的數(shù)量幾乎不受最小支持度制約,有效克服了參數(shù)敏感性的問題。該算法可通過調(diào)節(jié)引導(dǎo)函數(shù)參數(shù),實現(xiàn)對關(guān)聯(lián)規(guī)則挖掘數(shù)量的精準(zhǔn)把控。此外,通過對比實驗,對FARM算法與經(jīng)典Apriori算法不同最小支持度下的時間性能進行了評估。實驗結(jié)果表明,F(xiàn)ARM算法不僅能在極短時間內(nèi)完成有效關(guān)聯(lián)規(guī)則的挖掘,還能同時規(guī)避參數(shù)敏感問題。
關(guān)鍵詞: 商品關(guān)聯(lián)分析 關(guān)聯(lián)規(guī)則 引導(dǎo)函數(shù) 動態(tài)組合數(shù) Apriori
For information in English, please click here
Research on a Fast Algorithm for Mining Commodity Association Rules
趙鵬(2000-),男,碩士研究生,主要研究方向:優(yōu)化理論與方法
WANG Yong 1汪勇(1967-),男,教授,主要研究方向:機器學(xué)習(xí),系統(tǒng)優(yōu)化與決策
ZHANG Hong 1張洪(1981-),女,教授,研究方向:價值共創(chuàng)
Abstract:The traditional association rule data mining algorithm mostly uses the Apriori algorithm, which is sensitive to the minimum support and minimum confidence parameters, and cannot generate structured association rules, which is less efficient. On the basis of Apriorialgorithm, a fast association rule mining (FARM) algorithm is proposed, which adopts the proposed guide function dominance and dynamic combination number generation technology to realize the selection, connection and decomposition of frequent item sets, and solves the feasibility and efficiency of association rule mining. Through the experimental analysis of the UCI real dataset, it is found that the number of association rules mined by the FARM algorithm is almost not restricted by the minimum support degree, which effectively overcomes the problem of parameter sensitivity. The algorithm can accurately control the number of association rules by adjusting the guidance function parameters. In addition, the time performance of the FARM algorithm and the classical Apriori algorithm under different minimum support degrees is evaluated through comparative experiments. Experimental results show that the FARM algorithm can not only complete the mining of effective association rules in a very short time, but also avoid the parameter-sensitive problem at the same time.
Keywords: commodity association analysis association rules boot function number of dynamic combinations Apriori
引用

No.****
動態(tài)公開評議
共計0人參與
勘誤表
一種快速的商品關(guān)聯(lián)規(guī)則挖掘算法研究
評論
全部評論